If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+16x=39
We move all terms to the left:
x^2+16x-(39)=0
a = 1; b = 16; c = -39;
Δ = b2-4ac
Δ = 162-4·1·(-39)
Δ = 412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{412}=\sqrt{4*103}=\sqrt{4}*\sqrt{103}=2\sqrt{103}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{103}}{2*1}=\frac{-16-2\sqrt{103}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{103}}{2*1}=\frac{-16+2\sqrt{103}}{2} $
| 6x+13=-5x+8x | | -a-9=5 | | 5x+26=-3(6x-8)-11 | | k+37=-20 | | 18=8v-6v | | 5+3(7x+8)=-2 | | 9x-5=-95 | | -13=w/6 | | 525=z+148 | | Z+17=2y+15 | | -4.6x-2.3=9.2 | | g3− –12=13 | | 8+p/2=13 | | -3.85-2.1j=8.9j-9.33 | | 32=3y | | -3x+5=5+3x | | g3−–12=13 | | 4t-13=5 | | 1x+5(15-x)=47 | | 2(3x+5+7x=23 | | 4/5x+10=30 | | 7+7u=-8-5u+9u | | 25=n÷2 | | 40x+1.80=25x+3 | | k/9=81 | | 14.50h+9=100h | | 1.5(2.2b+2)= | | -40x-1.80=-25x-3 | | 7j+10-7j=4j-10 | | 5x+10(21-x)=170 | | z4=9 | | -39x12=0 |